

Noronha DataOps

[image: _images/main-logo-color.png]
DataOps framework for Machine Learning projects.

Contents:

	Introduction
	What’s this?

	Overview

	Pre-requisites

	Installation

	Basic usage

	User Guide
	Key Concepts

	Noronha’s Data Model

	Configuring Noronha

	Reference
	CLI Reference

	Python API Reference

	Python Toolkit Reference

	Developer Guide
	Contributing to Noronha

	Modules Relationship

	Modules Reference

	Production Guide
	Deploying Noronha

Introduction

What’s this?

Noronha is a framework that hosts Machine Learning projects inside a portable, ready-to-use DataOps architecture.
The goal here is to help Data Scientists benefit from DataOps practices without having to change much of their usual work behavior.

Overview

The following steps and the diagram bellow describe together the basic training and deploying workflow
of a Machine Learning project inside Noronha:

	Noronha’s base image is used as a starting point to provide the tools a project needs to run inside the framework.

	The project is packed in a Docker image with its dependencies, a training notebook and a notebook for inference.

	Every training is a parameterized execution of the training notebook, inside a container of the project’s image.

	Every model version produced is published to a versioning system in which MongoDB stores metadata and a file manager like Artifactory stores raw files and binaries.

	When deploying a model, containers of the project’s image are created for running the inference notebook as a service. Every asset necessary is injected into the containers.

[image: _images/workflow.png]

Pre-requisites

To use Noronha in its most basic configuration all you need is:

	Any recent, stable Unix OS.

	Docker v17+ [https://docs.docker.com/install/] with Swarm mode [https://docs.docker.com/engine/swarm/] enabled and configured to be used without sudo [https://docs.docker.com/install/linux/linux-postinstall/].

	A Conda v4.5+ [https://docs.conda.io/projects/conda/en/latest/user-guide/install/download.html] environment with Python v3.5+.

	Git v2+ [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git].

For a more advanced usage of the framework, see the configuration guide.

Installation

You can easily install Noronha by activating your Conda environment and running the following commands:

pip install noronha-dataops

nha get-me-started

This assumes you’re going to use the default plugins (MongoDB and Artifactory) in native mode (auto-generated instances).
To use plugins differently, see the configuration guide.

Basic usage

Let’s start with the simplest project structure:

project_home:
+-- Dockerfile
+-- requirements.txt

This is what the Dockerfile may look like:

default public base image for working inside Noronha
FROM noronhadataops/noronha:latest

project dependencies installation
ADD requirements.txt .
RUN bash -c "source ${CONDA_HOME}/bin/activate ${CONDA_VENV} && conda install --file requirements.txt"

deploying the project's code
ADD . ${APP_HOME}

Now record your project’s metadata and build it:

nha proj new --name my-proj
nha proj build --tag develop

Then, run the Jupyter Notebook interface inside your project’s image for editing and testing code:

nha note --edit --tag develop

For fully-working project templates and end-to-end tutorials, see the examples directory [https://github.com/noronha-dataops/noronha/tree/master/examples].

User Guide

Contents:

	Key Concepts
	Project Repositories

	Containers and Notebooks

	Islands (Plugins)

	Orchestration

	Noronha’s Data Model
	Project

	Build Version

	Model

	Dataset

	Training

	Model Version

	Deployment

	Treasure Chest

	Configuring Noronha
	Configuration Files

	Conventions for Islands

	Router

	MongoDB

	File Manager

	Lightweight Store

	Project

	Logger

	Docker

	Container Manager

	WebServer

Key Concepts

This section describes some important concepts that usually come up when working with Noronha. It’s recommended that you read and understand them in order to use the framework correctly.

The image bellow summarizes the components that compose the framework:

[image: ../_images/components_overview.png]

Project Repositories

When recording a project in Noronha, three kinds of repositories are supported.
None of them are mandatory, but at least one is recommended.

	Home: Local directory where the project is hosted (recommended when working in a sandbox).

	Git: The project’s remote Git repository (recommended for production ready projects).

	Docker: The project’s remote Docker repository (recommended for mock-ups, prototyping and third party image testing).

For the first two kinds (local, git) the framework assumes that your project’s root contains a Dockerfile that uses noronhadataops/noronha:latest [https://hub.docker.com/r/noronhadataops/noronha] as its base image. Everytime you build your project with Noronha from one of these two repositories, it’s going create a Docker image for the project and record some metadata related to it.

As for the third kind of repository (Docker), the framework assumes your repository contains a pre-built image, managed by the user or a third-party. When building from this repository, Noronha is just going to pull and tag the image for usage in the project’s tasks. Besides, if you try to run a project task with a Docker tag that hasn’t been recorded by Noronha yet, its default behaviour is to try to find an image with that tag in the project’s Docker repository.

This is a common Dockerfile to be used with Noronha:

FROM noronhadataops/noronha:latest

ADD requirements.txt .
RUN bash -c "source ${CONDA_HOME}/bin/activate ${CONDA_VENV} \
 && pip install -r requirements.txt \
 && rm -f requirements.txt"

ADD . ${APP_HOME}

You can also find other common Dockerfile structures in the examples section [https://github.com/noronha-dataops/noronha/tree/master/examples].

For the third kind of repository (docker) the framework assumes that the image is already managed by the user or a third-party, thus it’s ready to use and no builds will be performed by the framework itself.

Containers and Notebooks

Why do we build projects into Docker images? That’s because in Noronha every project task is basically a notebook execution that happens inside a container, and the project’s image is used to create those containers:

	IDE: Jupyter Notebook inside a container, for editing and testing your code in an interactive manner.

	Train: Model training inside a container. It’s basically an execution of the training notebook. Usually, by the end of the execution a model version is produced.

	Deploy: Prediction service inside a group of containers with one or more replicas. Here, the prediction notebook is used to sustain an HTTP endpoint for serving prediction requests.

You can find templates for structuring your training and prediction notebooks in the examples section [https://github.com/noronha-dataops/noronha/tree/master/examples].

Islands (Plugins)

There is also a fourth kind of container that we call an “island”. This is like an embedded plugin, a container which is created and managed by the framework itself and that is responsible for performing some useful task. In this case, the image used to create the container depends on the task its meant to perform.

These are the default islands:

	MongoDB: Database for storing metadata related to everything in this framework (projects, models, build versions, etc). See the data model section for further info.

	Artifactory: File manager for storing model files, small datasets and notebook execution outputs.

These are the optional islands:

	Router: simple Node.js proxy that routes prediction requests to the respective model deployments.

	Nexus: alternative file manager that you can use instead of Artifactory.

Instead of using a native (embedded) island, the file management and metadata storage tasks can also be performed by foreign (external, dedicated) instances, managed by the user or a third party (e.g.: a huge Nexus server in you company’s cloud or even a MongoDB cluster). To setup Noronha in this kind of environment see the configuration guide.

Orchestration

Noronha relies on a container manager to manipulate its containers. This can be either of:

	Docker Swarm: This is the default container manager, and it’s meant for experimenting with the framework in a local, non-distributed environment.

	Kubernetes: This is the recommended container manager for working with multiple projects and users in a real productive cluster. To configure Noronha to use Kubernetes as its container manager, see the configuration guide.

The image below illustrates how the framework components interact inside and outside the container manager. However, this is a simplified representation, since in reality multiple trainings and/or deployments belonging to one or more projects may coexist in the same environment.

[image: ../_images/orchestration.png]
Note that the host machine may be a local computer or even one of the servers that compose the container manager’s node pool. The framework’s libraries also need to be present in this host so that it can use Noronha’s API to interact with the container manager. Usually, a host like this is referred to as off board, since it’s not running inside a container, whereas IDE, training and deployments are referred to as on board.

Noronha’s Data Model

This section describes how Noronha stores its metadata in MongoDB and how these metadata documents relate to each other. Reading and understanding this section is going to help you when creating and manipulating projects, models and other objects in Noronha.

The diagram bellow gives a hint on the document relationships described in detail here:

[image: ../_images/data_model.png]
This guide adopts the following conventions for representing document fields that link to other documents:

	Referenced document: fields in bold are like pointers. Their content is always consistent with the original document they refer to. Fields like these are meant to answer questions like: which model is my project using? Which model files are expected?

	Embedded document: fields in italic are like snapshots. Their content is a report of how the referred document was when the field was updated. Fields like these are meant to answer questions like: which version of my project’s code was used in that training?

Project

Represents a project that is managed by the framework. Also referred to as proj.

{
 name: name-of-the-project # only alphanumerical and dashes
 desc: free text description
 model: list of models used by this project
 home_dir: local directory where the project is hosted
 git_repo: the project's remote Git repository
 docker_repo: the project's remote Docker repository
 # see project repositories
}

Build Version

Represents the Docker image that was created when the project was built by Noronha. Also referred to as bvers or bv (not to mistake for beavers :D).

{
 tag: Docker tag
 proj: the project which was built
 docker_id: the Docker hash associated to the image that was created
 git_version: the Git hash associated to the last commit before the project was built
 built_at: date and time when it was built
 built_from: either 'local', 'git' or 'pre-built' (determined by the build command)
}

Model

Represents a model that is managed by the framework.

{
 name: name-of-the-model # only alphanumerical and dashes
 desc: free text description
 model_files: list of file docs. These files compose the model's persistence
 data_files: list of file docs. These files compose a dataset for training the model
}

btw, this is how a file doc is defined:
{
 name: file.extension
 desc: free text description
 required: if true, this file can never be left out
 max_mb: maximum file size in MB. Not necessary, but good to know
}

Note that this is not a model version, but a model definition: it’s like a template that describes how a model is going to be persisted. Of course, when starting project we usually have no clue of how the model is going to be, but don’t worry: all properties except the model’s name can be edited later.

Dataset

Represents a dataset that is managed by the framework. Also referred to as ds (not a data scientist though :D).

{
 name: name-of-the-dataset # only alphanumerical and dashes
 model: the model to which this dataset belongs
 stored: if true, the dataset files are stored in Noronha's file manager
 details: dictionary with arbitrary details about the dataset
 compressed: if true, all dataset files are compressed into a single tar.gz file
 lightweight: if true, the dataset files are stored in a lightweight file storage

}

Training

Represents the execution of a training. Also referred to as train (not the one that runs on rails :D).

{
 name: name-of-the-training # only alphanumerical and dashes
 proj: the project responsible for this training
 bvers: the build version that was used for running this training
 notebook: relative path inside the project's repository to the training notebook that was executed
 task: task doc. Represents the training's progress and state
 details: dictionary with arbitrary details about the training
}

btw, this is how a task doc is defined:
{
 state: either one of WAITING, RUNNING, FINISHED, FAILED, CANCELLED
 progress: number between 0 and 1
 start_time: when the task started
 update_time: when the task's state and/or progress was updated
}

Model Version

Represents a persistent model that was generated during a training. Also referred to as movers or mv.

{
 name: name-of-the-version # only alphanumerical and dashes
 model: the parent model definition (template) that shapes this version
 train: the training execution that generated this version
 ds: the dataset that was used for training the model
 details: dictionary with arbitrary details about the version
 pretrained: reference to another model version that was used as a pre-trained asset in order to train this one
 compressed: if true, all model files are compressed into a single tar.gz file
 lightweight: if true, the model files are stored in a lightweight file storage
}

Deployment

Represents a group of one or more identical containers providing a prediction service. Also referred to as depl.

{
 name: name-of-the-deployment # only alphanumerical and dashes
 proj: the project to which this deployment belongs
 movers: the model version used in this deployment
 bvers: the build version (docker image) used for creating this deployment's containers
 notebook: relative path inside the project's repository to the prediction notebook that is executed
 details: dictionary with arbitrary details about the deployment
}

Treasure Chest

Represents a pair of credentials recorded and stored securely in the framework. Also referred to as tchest.

{
 name: name-of-the-tchest # only alphanumerical and dashes
 owner: os-user-to-whom-it-belongs
 desc: free text description
 details: dictionary with arbitrary details about the tchest
}

Configuring Noronha

Configuration Files

Noronha’s default configuration file is packaged together with its Python libraries, under the resources directory [https://github.com/noronha-dataops/noronha/tree/master/noronha/resources]. It’s a YAML file in which the top keys organize properties according to the subjects they refer to.

project:
 working_project: null

logger:
 level: INFO
 pretty: false
 join_root: true
 max_bytes: 1048576 # 1mb
 bkp_count: 1

mongo:
 native: true
 port: 30017
 database: nha_db
 write_concern:
 w: 1
 j: true
 wtimeout: 5

router:
 native: true
 port: 30080

file_store:
 native: true
 port: 30023
 type: artif # (artif, nexus)

lightweight_store:
 enabled: false
 native: false
 type: cass
 hosts: ['cassandra']
 port: 30042
 keyspace: nha_db
 replication_factor: 3

docker:
 daemon_address: unix:/var/run/docker.sock
 target_registry: null
 registry_secret: null

container_manager:
 type: swarm
 resource_profiles:
 nha-gpu:
 enable_gpu: false
 requests:
 memory: 512
 cpu: 1
 limits:
 memory: 2048
 cpu: 1

web_server:
 type: simple
 enable_debug: false

This configuration can be extended by placing a nha.yaml file with the desired keys in the current working directory or in the user’s home directory at ~/.nha/. The file resolution is as follows:

	./nha.yaml: if present, this file will be used to extend the default configuration. No other files will be looked for.

	~/.nha/nha.yaml: if the previous alternative wasn’t available, this file will be used instead.

	If none of the alternatives above was available, only the default configuration is going to be used.

Conventions for Islands

The following properties are common for all plugins.

	native: (boolean) If true, this plugin runs inside a container manager by Noronha. Otherwise, this plugin runs in a dedicated server, managed by the user or a third-party. The later option is referred to as foreign mode, in opposition to the native mode (default: true).

	host: This property is only used in foreign mode. It refers to the hostname or IP of the server in which Noronha is going to find the service (e.g.: MongoDB’s hostname or IP, as it appears in its connection string).

	port: In foreign mode, this refers to the port in which the plugin is exposed (e.g.: MongoDB’s port, as it appears in its connection string). In native mode, this refers to the server port in which Noronha is going to expose the plugin. Note that if your container manager is Kubernetes only the ports between 30000 and 31000 are available.

	user: Username for authenticating in the plugin (foreign mode only).

	pswd: Password for authenticating in the plugin (foreign mode only).

	tchest: Instead of specifying credentials explicitly, you may set this property with the name of a Treasure Chest that holds your pre-recorded credentials.

	disk_allocation_mb: This property is only used in native mode. When Noronha creates a volume to store the plugin’s data, it’s going to ask the container manager for this amount of storage, in megabytes.

The following topics describe the properties under each configuration subject (top keys in the YAML file).

Router

The following properties are found under the key router and they refer to how Noronha uses its model router.

	port: As explained in the island conventions (default: 30080).

MongoDB

The following properties are found under the key mongo and they refer to how Noronha uses its database.

	port: As explained in the island conventions (default: 30017).

	database: Name of the database that Noronha is going to access in MongoDB. Created in runtime if not existing (default: nha_db).

	write_concern: Dictionary with the concern options that Noronha should use when writing to the database, as in MongoDB’s manual [https://docs.mongodb.com/manual/reference/write-concern/]. The following example represents the default values for this property:

write_concern:
 w: 1
 j: true
 wtimeout: 5

File Manager

The following properties are found under the key file_store and they refer to how Noronha uses its file manager.

	port: As explained in the island conventions (default: 30023).

	use_ssl: (boolean) Set to true if your file manager server uses https (foreign mode only) (default: false).

	check_certificate: (boolean) When using SSL encryption, you may set this to false in order to skip the verification of your server’s certificate, although this is not recommended (foreign mode only) (default: true).

	type: Reference to the file manager that Noronha should use (either artif, for Artifactory, or nexus, for Nexus) (default: artif).

	repository: Name of an existing repository that Noronha should use to store its model files, datasets and output notebooks. For Artifactory, the default is example-repo-local. For Nexus there is no default value, since the first repository needs to be created manually through the plugin’s user interface.

Lightweight Store

The following properties are found under the key lightweight_store and they refer to how Noronha uses its lightweight file storage.

This is a storage alternative to be used along with the standard file manager, so that small datasets and model versions can be persisted and restored faster.
This feature is specially useful when your prediction notebook uses a LazyModelServer.

Note that in order to use this feature you should have already configured an external Cassandra Database [http://cassandra.apache.org].
An easy way to experiment with it in a sandbox environment is to use a dockerized Cassandra [https://hub.docker.com/_/cassandra/].

	enabled: (boolean) Set to true if you’re going to use this feature (default: false).

	native: As explained in the island conventions. Currently, the only supported value is false.

	type: The type of database. Currently, the only supported value is cass.

	port: The database’s communication port (default: 9042).

	hosts: List of hostnames or IP’s to connect with your database.

Project

The following properties are found under the key project and they refer to how Noronha handle’s your project.

	working_project: this tells the framework which project you are working on right now. This is important because many features such as training or deploying models can only be performed inside the scope of a project. However, before looking into this property the framework checks two other alternatives: was a project name provided as argument to the function? Is the current working directory a local repository for a project?

Logger

The following properties are found under the key logger and they refer to how Noronha logs messages.

	level: Log verbosity level, as in Python’s logging (one of: ERROR, WARN, INFO, DEBUG) (default: INFO).

	pretty: (boolean) If true, all dictionaries and exception objects are pretty-printed (default: false).

	directory: Path to the directory where log files hould be kept (default: ~/.nha/logs/)

	file_name: Log file name (default: noronha.log)

	max_bytes: Max log file size, in bytes (default: 1mb).

	bkp_count: Number of log file backups to be kept (default: 1).

	join_root: (boolean) If true, log messages by other frameworks such as Flask and Conu are also dumped to Noronha’s log file.

Docker

The following properties are found under the key docker and they refer to how Noronha uses the Docker engine.

	daemon_address: Path or address to Docker daemon’s socket (default: unix:/var/run/docker.sock).

	target_registry: Address of the Docker registry to which the images built by the framework will be uploaded (default is null, so images are kept locally).

The following parameters are only used if the chosen container manager is Kubernetes:

	registry_secret: Name of the Kubernetes secret that your cluster uses to access the registry configured in the previously. This property is recommended if your containers fail with the message ImagePullBackOff.

Container Manager

The following properties are found under the key container_manager and they refer to how Noronha uses the container manager.

	type: Reference to the container manager that Noronha should use as its backend (either swarm, for Docker Swarm, or kube, for Kubernetes) (default: swarm).

	api_timeout: The maximum time, in seconds, to wait before the container manager completes a requested action (default: 20 for Docker Swarm, 60 for Kubernetes).

	resource_profiles: A mapping in which the keys are resource profile names and the values are resource specifications. Example:

light_training:
 requests:
 memory: 256
 cpu: 1
 limits:
 memory: 512
 cpu: 2

heavy_training:
 requests:
 memory: 2048
 cpu: 2
 limits:
 memory: 4096
 cpu: 4

cpu values are expressed in vCores and are expected to be integer, float or string. Precion lower than 0.001 is not allowed
memory values are expressed in MB and are expected to be integer.

Such resource profile names may be specified when starting an IDE, training or deployment (note that when deploying with multiple replicas, the resources specification will be applied to each replica).

Another interesting strategy is to specify default resource profiles according to the work section. The available work sections are nha-ide, nha-train and nha-depl. Those refer to the default resource specifications applied when using the IDE, training or running a deploy, respectively. Example:

nha-ide:
 requests:
 memory: 256
 cpu: 1
 limits:
 memory: 512
 cpu: 2

nha-train:
 requests:
 memory: 2048
 cpu: 2
 limits:
 memory: 4096
 cpu: 4

Additional configuration may be added to these profiles in order to further customize containers. Here is an example of the possible configuration that a resource profile accepts and implements:

nha_secure:
 service_type: ClusterIP

gpu_training:
 enable_gpu: true
 requests:
 memory: 256
 cpu: 1
 limits:
 memory: 512
 cpu: 2

elastic_deploy:
 auto_scale: true # does not affect Docker Swarm deploy
 minReplicas: 1
 maxReplicas: 10
 targetCPUUtilizationPercentage: 50
 requests:
 memory: 256
 cpu: 1
 limits:
 memory: 512
 cpu: 2

You can change the type of Kubernetes service that Noronha creates using the service_type keyword. Accepted values are: ClusterIP, NodePort, LoadBalancer

GPU support is added through the enable_gpu keyword. Currently, Noronha does not support ID-specific GPU assignment or multiple GPUs per Pod.

Kubernetes Horizontal Pod Autoscaling (HPA) support is added through the auto_scale keyword. If no additional keys are specified, the default values from the code above are used. Currently there is only support for CPU-based autoscaling.

	healthcheck: A mapping that describes how the container manager is going to probe each container’s liveness and readiness in a deployment. The values in the following example are the default ones:

healthcheck:
 enabled: false # whether to apply healthchecks or not
 start_period: 60 # seconds before healthchecks start
 interval: 30 # seconds between each healtchcheck
 timeout: 3 # seconds for the container to respond to a healthcheck
 retries: 3 # number of consecutive healthcheck failures for a container to be force-restarted

The following parameters are only used if the chosen container manager is Kubernetes:

	namespace: An existing Kubernetes namespace in which Noronha will create its resources (default: default).

	storage_class: An existing storage class that Noronha will use to create persistent volume claims for storing its plugins’ data (default: standard).

	nfs: A mapping with the keys path and server. The key server should point to your NFS server’s hostname or IP, whereas path refers to an existing directory inside your NFS server. Noronha will create volumes under the specified directory for sharing files with its training, deployment and IDE containers.

WebServer

The following properties are found under the key web_server and they refer to how Noronha configures your inference service. These can be overriden when you instanciate a ModelServer in your predict notebook.

	type: defines which server you want to use. Current supported options are: simple and gunicorn.

	enable_debug: this option is used to set a debug mode for your server.

	threads: dictionary with keys: enabled to enable multi-thread, high_cpu to set a higher thread count and number to set a specific thread count, which overrides high_cpu.

threads:
 enabled: false
 high_cpu: false
 number: 1

	extra_conf: dictionary with keys that may vary depending on your server. For Gunicorn configuration options, please refer to: Gunicorn manual [https://docs.gunicorn.org/en/stable/settings.html]

Below is a complete example of web_server configuration:

web_server:
 type: gunicorn
 enable_debug: false
 threads:
 enabled: true
 high_cpu: true
 extra_conf:
 workers: 1

Reference

Contents:

	CLI Reference
	General

	Project

	Build Version

	Model

	Dataset

	Training

	Model Version

	Deployment

	Notebook (IDE)

	Islands (Plugins)

	Treasure Chest

	Python API Reference
	Under Construction

	Python Toolkit Reference
	Shortcuts

	Publish

	Serving

CLI Reference

This section describes the usage of Noronha’s command line interface.
Each topic in this section refers to a different API subject such as projects, models and so on.

General

The entrypoint for Noronha’s CLI is either the keyword noronha, for being explicit, or the alias nha,
for shortness and cuteness. You can always check which commands are available with the help option:

nha --help # overview of all CLI subjects
nha proj --help # describe commands under the subject *proj*
nha proj new --help # details about the command *new* under the subject *proj*

Note that the Conda environment in which you installed Noronha
needs to be activated so that this entrypoint is accessible. Besides, we assume these
commands are executed from the host machine.

The entrypoint also accepts the following flags and options for customizing a command’s output:

-l, --log-level TEXT Level of log verbosity (DEBUG, INFO, WARN, ERROR)
-d, --debug Set log level to DEBUG
-p, --pretty Less compact, more readable output
-s, --skip-questions Skip questions
-b, --background Run in background, only log to files

Usage example for skipping questions in background and keeping only pretty warning messages in the log files:

nha --background --skip-questions --log-level WARN --pretty proj list
nha -b -s -l WARN -p proj list # same command, shorter version with aliases

The default directory for log files is ~/.nha/logs. For further log configuration options see the log configuration section.

There’s also a special command for newbies, that’s accesible directly from the entrypoint:

nha get-me-started

As stated in the introduction, this is going to configure the
basic plugins in native mode automatically. This means that after
running this command your container manager is going to be
running a MongoDB service for storing Noronha’s metadata and an
Artifactory service for managing Noronha’s files. This is useful if you are just
experimenting with the framework and do not want to spend time customizing anything yet.

Project

Reference for commands under the subject proj.

	info: information about a project

--proj, --name Name of the project (default: current working project)

	list: list hosted projects

-f, --filter Query in MongoDB's JSON syntax
-e, --expand Flag: expand each record's fields
-m, --model Only projects that use this model will be listed

	rm: remove a project and everything related to it

--proj, --name Name of the project (default: current working project)

	new: host a new project in the framework

-n, --name Name of the project
-d, --desc Free text description
-m, --model Name of an existing model (further info: nha model --help)
--home-dir Local directory where the project is hosted.
 Example: /path/to/proj
--git-repo The project's remote Git repository.
 Example: https://<git_server>/<proj_repo>
--docker-repo The project's remote Docker repository.
 Example: <docker_registry>/<proj_image>

	update: update a projects in the database

-n, --name Name of the project you want to update (default: current working project)
-d, --desc Free text description
-m, --model Name of an existing model (further info: nha model --help)
--home-dir Local directory where the project is hosted.
 Example: /path/to/proj
--git-repo The project's remote Git repository.
 Example: https://<git_server>/<proj_repo>
--docker-repo The project's remote Docker repository.
 Example: <docker_registry>/<proj_image>

	build: encapsulate the project in a new Docker image

--proj Name of the project (default: current working project)
-t, --tag Docker tag for the image (default: latest)
--no-cache Flag: slower build, but useful when the cached layers contain outdated information
--from-here Flag: build from current working directory (default option)
--from-home Flag: build from project's home directory
--from-git Flag: build from project's Git repository (master branch)
--pre-built Flag: don't build, just pull and tag a pre-built image from project's Docker repository

Build Version

Reference for commands under the subject bvers.

	info: information about a build version

--proj The project to which this build version belongs (default: current working project)
--tag The build version's docker tag (default: latest)

	list: list build versions

--proj The project whose versions you want to list (default: current working project)
-f, --filter Query in MongoDB's JSON syntax
-e, --expand Flag: expand each record's fields

	rm: remove a build version

--proj The project in which this version belongs (default: current working project)
--tag The version's docker tag (default: latest)

Model

Reference for commands under the subject model.

	info: information about a model

--name Name of the model

	list: list model records

-f, --filter Query in MongoDB's JSON syntax
-e, --expand Flag: expand each record's fields

	rm: remove a model along with all of it’s versions and datasets

-n, --name Name of the model

	new: record a new model in the database

-n, --name Name of the model
-d, --desc Free text description
--model-file JSON describing a file that is used for saving/loading this model.
 Example:
 {"name": "categories.pkl", "desc": "Pickle with DataFrame for looking up prediction labels", "required": true, "max_mb": 64}
--data-file JSON describing a file that is used for training this model.
 Example:
 {"name": "intents.csv", "desc": "CSV file with examples for each user intent", "required": true, "max_mb": 128}

	update: update a model record

-n, --name Name of the model you want to update
-d, --desc Free text description
--model-file JSON describing a file that is used for saving/loading this model.
 Example:
 {"name": "categories.pkl", "desc": "Pickle with DataFrame for looking up prediction labels", "required": true, "max_mb": 64}
--data-file JSON describing a file that is used for training this model.
 Example:
 {"name": "intents.csv", "desc": "CSV file with examples for each user intent", "required": true, "max_mb": 128}
--no-model-files Flag: disable the tracking of model files
--no-ds-files Flag: disable the tracking of dataset files

Dataset

Reference for commands under the subject ds.

	info: information about a dataset

--model Name of the model to which this dataset belongs
--name Name of the dataset

	list: list datasets

-f, --filter Query in MongoDB's JSON syntax
-e, --expand Flag: expand each record's fields
--model Only datasets that belong to this model will be listed

	rm: remove a dataset and all of its files

--model Name of the model to which this dataset belongs
--name Name of the dataset

	new: add a new dataset

-n, --name Name of the dataset (defaults to a random name)
-m, --model The model to which this dataset belongs (further info: nha model --help)
-d, --details JSON with any details related to the dataset
-p, --path Path to the directory that contains the dataset files (default: current working directory)
-c, --compress Flag: compress all dataset files to a single tar.gz archive
--skip-upload Flag: don't upload any files, just record metadata
--lightweight Flag: use lightweight storage

	update: update a dataset’s details or files

-n, --name Name of the dataset you want to update
-m, --model The model to which this dataset belongs (further info: nha model --help)
-d, --details JSON with details related to the dataset
-p, --path Path to the directory that contains the dataset files (default: current working directory)

Training

Reference for commands under the subject train.

	info: information about a training execution

--name Name of the training
--proj Name of the project responsible for this training (default: current working project)

	list: list training executions

-f, --filter Query in MongoDB's JSON syntax
-e, --expand Flag: expand each record's fields
--proj Name of the project responsible for the trainings (default: current working project)

	rm: remove a training’s metadata

--name Name of the training
--proj Name of the project responsible for this training (default: current working project)

	new: execute a new training

--name Name of the training (defaults to a random name)
--proj Name of the project responsible for this training (default: current working project)
--notebook, --nb Relative path, inside the project's directory
 structure, to the notebook that will be executed
-p, --params JSON with parameters to be injected in the notebook
-t, --tag The training runs on top of a Docker image that
 belongs to the project. You may specify the image's
 Docker tag or let it default to "latest"
-e, --env-var Environment variable in the form KEY=VALUE
-m, --mount A host path or docker volume to mount on the training container.
 Syntax: <host_path_or_volume_name>:<container_path>:<rw/ro>
 Example: /home/user/data:/data:rw
--dataset, --ds Reference to a dataset to be mounted on the training container.
 Syntax: <model_name>:<dataset_name>
 Example: iris-clf:iris-data-v0
--pretrained Reference to a model version that will be used as a pre-trained model during this training.
 Syntax: <model_name>:<version_name>
 Example: word2vec:en-us-v1
--resource-profile Name of a resource profile to be applied for each container.
 This profile should be configured in your nha.yaml file

Model Version

Reference for commands under the subject movers.

	info: information about a model version

--model Name of the model to which this version belongs
--name Name of the version

	list: list model versions

-f, --filter Query in MongoDB's JSON syntax
-e, --expand Flag: expand each record's fields
--model Only versions of this model will be listed
--dataset Only versions trained with this dataset will be listed
--train Only model versions produced by this training will be listed
--proj To be used along with 'train': name of the project to which this training belongs

	rm: remove a model version and all of its files

--model Name of the model to which this version belongs
--name Name of the version

	new: record a new model version in the framework

-n, --name Name of the version (defaults to a random name)
-m, --model The model to which this version belongs (further info: nha model --help)
-d, --details JSON with details related to the model version
-p, --path Path to the directory that contains the model files (default: current working directory)
--dataset Name of the dataset that trained this model version
--train Name of the training that produced this model version
--proj To be used along with 'train': name of the project to
 which this training belongs
--pretrained Reference to another model version that was used as a pre-trained asset for training this one.
 Syntax: <model_name>:<model_version>
 Example: word2vec:en-us-v1
-c, --compress Flag: compress all model files to a single tar.gz archive
--skip-upload Flag: don't upload any files, just record metadata
--lightweight Flag: use lightweight storage

	update: update a model version’s details or files

-n, --name Name of the model version you want to update
-m, --model The model to which this version belongs (further info: nha model --help)
-d, --details JSON with details related to the version
-p, --path Path to the directory that contains the model files (default: current working directory)
--dataset Name of the dataset that trained this model version
--train Name of the training that produced this model version
--proj To be used along with 'train': name of the project to which this training belongs

Deployment

Reference for commands under the subject depl.

	info: information about a deployment

--name Name of the deployment
--proj Name of the project responsible for this deployment (default: current working project)

	list: list deployments

-f, --filter Query in MongoDB's JSON syntax
-e, --expand Flag: expand each record's fields
--proj Name of the project responsible for this deployment (default: current working project)

	rm: remove a deployment

--name Name of the deployment
--proj Name of the project responsible for this deployment (default: current working project)

	new: setup a deployment

--name Name of the deployment (defaults to a random name)
--proj Name of the project responsible for this deployment (default: current working project)
--notebook, --nb Relative path, inside the project's directory
 structure, to the notebook that will be executed
--params JSON with parameters to be injected in the notebook
-t, --tag Each deployment task runs on top of a Docker image
 that belongs to the project. You may specify the
 image's Docker tag or let it default to "latest"
-n, --n-tasks Number of tasks (containers) for deployment
 replication (default: 1)
--port Host port to be routed to each container's inference
 service
-e, --env-var Environment variable in the form KEY=VALUE
-m, --mount A host path or docker volume to mount on each deployment container.
 Syntax: <host_path_or_volume_name>:<container_path>:<rw/ro>
 Example: /home/user/data:/data:rw
--movers, --mv Reference to a model version to be mounted on each deployment container.
 Syntax: <model_name>:<version_name>
 Example: iris-clf:experiment-v1
--resource-profile Name of a resource profile to be applied for each container.
 This profile should be configured in your nha.yaml file

Notebook (IDE)

You can start-up a Jupyter notebook interface for your project in order to edit and test your code inside a
disposable environment that is much like the environment your code is going to find in production.

	note: Access to an interactive notebook (IDE)

--proj TEXT Name of the project you'd like to work with.
-t, --tag The IDE runs on top of a Docker image that belongs to the current working project.
 You may specify the image's Docker tag or let it default to "latest"
-p, --port Host port that will be routed to the notebook's user interface (default: 30088)
-e, --env-var Environment variable in the form KEY=VALUE
-m, --mount A host path or docker volume to mount on the IDE's container.
 Syntax: <host_path_or_volume_name>:<container_path>:<rw/ro>
 Example: /home/user/data:/data:rw
--edit Flag: also mount current directory into the container's /app directory.
 This is useful if you want to edit code, test it and save it in the local machine
 (WARN: in Kubernetes mode this will only work if the current directory is part of your NFS server)
--dataset, --ds Reference to a dataset to be mounted on the IDE's container.
 Syntax: <model_name>:<dataset_name>
 Example: iris-clf:iris-data-v0
--movers, --mv Reference to a model version to be mounted on the IDE's container.
 Syntax: <model_name>:<version_name>
 Example: word2vec:en-us-v1:true
--resource-profile Name of a resource profile to be applied for each container.
 This profile should be configured in your nha.yaml file

Islands (Plugins)

Under the subject isle there is a branch of commands for each plugin.
You can check a plugin’s commands with the help option:

nha isle plugin --help # overview of this plugin's commands
nha isle plugin command --help # details about one of this plugin's commands

The available plugins are:

artif File manager
mongo Database for metadata
nexus File manager (alternative)
router (Optional) Routes requests to deployments

The commands bellow are available for all plugins, unless stated otherwise:

	setup: start and configure this plugin

-s, --skip-build Flag: assume that the required Docker image for setting up
 this plugin already exists.

Treasure Chest

Reference for commands under the subject tchest, which are meant to manage Treasure Chests.

	info: information about a Treasure Chest

--name Name of the Treasure Chest

	list: list Treasure Chest records

-f, --filter Query in MongoDB's JSON syntax
-e, --expand Flag: expand each record's fields

	rm: remove a Treasure Chest

-n, --name Name of the Treasure Chest

	new: record a new Treasure Chest in the database

-n, --name Name of the Treasure Chest
--desc Free text description
--details JSON with any details related to the Treasure Chest
-u, --user Username to be recorded
-p, --pswd Password to be recorded

	update: update a Treasure Chest

-n, --name Name of the Treasure Chest you want to update
--desc Free text description
--details JSON with any details related to the Treasure Chest
-u, --user Username to be recorded
-p, --pswd Password to be recorded

Python API Reference

Under Construction

Python Toolkit Reference

This section describes the usage of Noronha’s toolkit, which is packed with the base image and meant to be used in any Jupyter Notebook inside your project. The goal of the toolkit is to provide a standard way of performing some common tasks when developing and testing your training and prediction notebooks. This kind of practice can make your notebooks more generic and reusable.

Shortcuts

Reference for functions inside the shortcuts module [https://github.com/noronha-dataops/noronha/tree/master/noronha/tools/shortcuts.py].

Publish

Reference for the model publisher, which can be found in the publish module [https://github.com/noronha-dataops/noronha/tree/master/noronha/tools/publish.py].

Serving

Reference for the inference servers, which can be found in the serving module [https://github.com/noronha-dataops/noronha/tree/master/noronha/tools/serving.py].

Developer Guide

Contents:

	Contributing to Noronha
	Before you begin

	Modules Relationship
	Creating a project

	Publishing a model version

	Launching the IDE

	Modules Reference
	db

	bay

Contributing to Noronha

The following sections are meant for developers that want to contribute to Noronha by developing new features, fixing
bugs and/or improving it in any way.

Before you begin

When contributing to Noronha, it is assumed that you are comfortable with the following technologies:

	Supervised Machine Learning

	DevOps pipelines

	Object oriented Python 3

	Docker (engine and Swarm)

	Kubernetes

	MongoDB

	REST API’s

	YAML

It is also recommended that you are familiar with Noronha from a user’s perspective
(i.e.: have read all of the previous sections in this manual)

Modules Relationship

As Noronha performs a task - such as publishing a model or running a training - it relies on several modules that
interact in order to produce the expected result. This section explains the relationships that occur between those
modules when performing the most common tasks.

The following caption illustrates the conventions used for representing those relationshipts in the each of the topics bellow:

[image: ../_images/module_rel_caption.png]

Creating a project

[image: ../_images/module_rel_proj.png]

Publishing a model version

[image: ../_images/module_rel_movers.png]

Launching the IDE

[image: ../_images/module_rel_ide.png]

Modules Reference

This section summarizes the roles and responsibilities of the most important modules inside Noronha’s software architecture.

db

The following topics describe the modules inside the package noronha.db [https://github.com/noronha-dataops/noronha/tree/master/noronha/db],
which is responsible for defining the ORM’s for all metadata objects managed by Noronha,
as well as utilities for handling those objects.

	main.py

	

	utils.py

	

	proj.py

	

	bvers.py

	

	model.py

	

	ds.py

	

	train.py

	

	movers.py

	

	depl.py

	

	tchest.py

	

bay

The following topics describe the modules inside the package noronha.bay [https://github.com/noronha-dataops/noronha/tree/master/noronha/bay],
which provides interfaces that help Noronha interact with other systems such as container managers and file managers.
Note that every module inside this package has a nautic/pirate-like thematic.

	warehouse.py

	

	barrel.py

	

	cargo.py

	

	captain.py

	

	expedition.py

	

	island.py

	

	compass.py

	

	tchest.py

	

	anchor.py

	

	shipyard.py

	

Production Guide

Contents:

	Deploying Noronha
	Requirements

	Configuring Kubernetes

	Configuring Noronha client on the machine

	Deploy Artifactory, MongoDB and NodeJS

	Ingress setup

Deploying Noronha

The following sections intent to show how to install Noronha in production.
These instructions are focused on a devops team that will deploy and manage Noronha on a Kubernetes-like cluster.

Requirements

Minimum:

	
	Kubernetes cluster (AKS, EKS, GKE, etc.)
	
	3 nodes (2 vCPUs 8GB RAM)

	50 GB HDD Disk

	A container registry

	Noronha compatible machine, with kubectl installed

Recomended:

	
	Kubernetes cluster (AKS, EKS, GKE, etc.)
	
	4 nodes (8 vCPUs 30GB RAM)

	250 GB SSD Disk

	A container registry

	Noronha compatible machine, with kubectl installed

Configuring Kubernetes

You can apply all configurations in this section through kubectl:

kubectl -n <namespace-id> apply -f <config-file>.yaml

It’s recomended to create a namespace for Noronha. You can do this by configuring the following script.

apiVersion: v1
kind: Namespace
metadata:
 name: <namespace-id>

Noronha will also need a service account and the permissions to access the cluster. You can create one with the following script.

apiVersion: v1
kind: ServiceAccount
metadata:
 name: <account-id>
 namespace: <namespace-id>

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
 name: <role-id>
 namespace: <namespace-id>
rules:
- apiGroups: ["", "extensions", "apps", "autoscaling"]
 resources: ["pods", "services", "deployments", "secrets", "pods/exec", "pods/status", "pods/log", "persistentvolumeclaims", "namespaces", "horizontalpodautoscalers", "endpoints"]
 verbs: ["get", "create", "delete", "list", "update", "watch", "patch"]

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
 name: <role-id>
 namespace: <namespace-id>
subjects:
- kind: ServiceAccount
 name: <service-account-id>
 namespace: <namespace-id>
roleRef:
 kind: ClusterRole
 name: <role-id>
 apiGroup: rbac.authorization.k8s.io

apiVersion: v1
kind: Secret
metadata:
 name: <service-account-id>
 namespace: <namespace-id>
 annotations:
 kubernetes.io/service-account.name: <service-account-id>
type: kubernetes.io/service-account-token

Noronha needs a NFS, which can be deployed in Kubernetes through the script below.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: <nfs-id>
 namespace: <namespace-id>
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 128Gi
 storageClassName: <storage_class> # edit the storage class for provisioning disk on demand (Azure: default | Others: standard)

apiVersion: apps/v1
kind: Deployment
metadata:
 name: <nfs-id>
 namespace: <namespace-id>
spec:
 selector:
 matchLabels:
 role: <nfs-id>
 template:
 metadata:
 labels:
 role: <nfs-id>
 spec:
 containers:
 - name: <nfs-id>
 image: gcr.io/google_containers/volume-nfs:0.8
 args:
 - /nfs
 ports:
 - name: nfs
 containerPort: 2049
 - name: mountd
 containerPort: 20048
 - name: rpcbind
 containerPort: 111
 securityContext:
 privileged: true
 volumeMounts:
 - mountPath: /nfs
 name: mypvc
 volumes:
 - name: mypvc
 persistentVolumeClaim:
 claimName: <nfs-id>

apiVersion: v1
kind: Service
metadata:
 name: <nfs-id>
 namespace: <namespace-id>
spec:
 clusterIP: <nfs_server> # edit the nfs internal ip (if this one is already taken)
 ports:
 - name: nfs
 port: 2049
 - name: mountd
 port: 20048
 - name: rpcbind
 port: 111
 selector:
 role: <nfs-id>

Configuring Noronha client on the machine

After the cluster is ready, you need to configure Noronha on your machine.
You may do this by configuring the .nha/nha.yaml file on your home directory.

logger:
 level: DEBUG
 pretty: true
 directory: /logs
 file_name: clever.log
docker:
 target_registry: <docker_registry> # edit the docker registry used by the k8s cluster
 registry_secret: <registry_secret> # edit the name of the k8s secret that holds your docker registry's credentials
container_manager:
 type: kube
 namespace: clever
 api_timeout: 600
 healthcheck:
 enabled: true
 start_period: 120
 interval: 60
 retries: 12
 storage_class: <storage_class> # edit the storage class for provisioning disk on demand (Azure: default | Others: standard)
 nfs:
 server: <nfs_server> # edit the nfs server ip address (same as in nfs.yaml)
 path: /nfs/nha-vols
 resource_profiles:
 nha-train:
 requests:
 memory: 5120
 cpu: 2
 limits:
 memory: 8192
 cpu: 4

You may share this file with other Noronha users as a template for your Noronha cluster.

Deploy Artifactory, MongoDB and NodeJS

Noronha may deploy Artifactory, Mongo and Node by itself:

nha -d -p isle artif setup
nha -d -p isle mongo setup
nha -d -p isle router setup

Ingress setup

In order to access your Kubernetes cluster from the internet, you may create an Ingress Controller with the following script:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: <ingress-id>
 namespace: <namespace-id>
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /
 kubernetes.io/ingress.global-static-ip-name: <ip-name> # name of the static ip reservation
spec:
 rules:
 - http:
 paths:
 - path: /predict # this path is used by OnlinePredict and LazyModelServer when serving your model
 pathType: ImplementationSpecific
 backend:
 service:
 name: nha-isle-router
 port:
 number: 80
 - path: /update # this path is used by LazyModelServer when serving your model
 pathType: ImplementationSpecific
 backend:
 service:
 name: nha-isle-router
 port:
 number: 80
 - path: /artifactory/* # this path is only required if you want to use Artifactory through an ingress
 pathType: Prefix
 backend:
 service:
 name: nha-isle-artif
 port:
 number: 8081

Index

 _images/orchestration.png
Host machine

Orchestrate .
« Python API Container Manager

- Cl

Mefudcfu

CRUD »'
Datasets
Models

Publlsh/ Yad

Training Deplo J

‘ Predict

Model
router

or
registry

Request

_images/workflow.png
Base image

Project's image
+ Depencencies

« Training notebook
« Inference notebook

Container
manager

Parameterized
training

Inference
service

Inference
service

* Model
* Metadata

Versioning
+ Models’ binary files .

« Training metrics +

* Hyper-parameters + Configuration

* Dataset metadata

Model Router

0

_static/plus.png

_static/file.png

_static/minus.png

_images/module_rel_ide.png
bay.compass MongoCompass...

db.* <SomeEntity>:
’ Document schema for representing some metadata entity
NotebookAPI:
api.note » Validates all metadata entities involved (Project, Dataset, etc)
* Manipulates a ShortExpedition
- ShortExpedition:
bay.expedition
Defines the arguments of a container execution
Captain:
bay.captain * Manipulates DatasetCargo
* Runs a container and waits for its completion
DatasetCargo:
bay.cargo
Maps the dataset files to a volume

_images/module_rel_movers.png
bay.compass

db.movers

api.movers

bay.barrel

bay.warehouse

MongoCompass...

Document schema for representing a model version

ModelVersion:

ModelVersionAPI:

» Validates request to create a model version
* Manipulates a ModelVersion and a MoversBarrel

1_|

Maps a model version to a Warehouse storage

i_l

Warehouse:
 Stores files in a file management server

MoversBarrel:

_images/main-logo-color.png
8
ZNORONHA

_images/module_rel_caption.png
| Modves | Clases |

one_class:
package.module e
descriptive
other_class:
package.other_module >
dependency procedure

_images/module_rel_proj.png
ProjectAPI:

api.proj » Validates request to create a project

* Manipulates a Project document

1_|

Document schema for representing a project

1_|

MongoCompass: ’

Project:

db.proj

bay.compass

Collection of parameters for accessing MongoDB

1_|

MongoConf:
» Parses YAML configuration under key mongo

common.conf

nav.xhtml

 Table of Contents

 		
 Noronha DataOps

 		
 Introduction

 		
 What’s this?

 		
 Overview

 		
 Pre-requisites

 		
 Installation

 		
 Basic usage

 		
 User Guide

 		
 Key Concepts

 		
 Project Repositories

 		
 Containers and Notebooks

 		
 Islands (Plugins)

 		
 Orchestration

 		
 Noronha’s Data Model

 		
 Project

 		
 Build Version

 		
 Model

 		
 Dataset

 		
 Training

 		
 Model Version

 		
 Deployment

 		
 Treasure Chest

 		
 Configuring Noronha

 		
 Configuration Files

 		
 Conventions for Islands

 		
 Router

 		
 MongoDB

 		
 File Manager

 		
 Lightweight Store

 		
 Project

 		
 Logger

 		
 Docker

 		
 Container Manager

 		
 WebServer

 		
 Reference

 		
 CLI Reference

 		
 General

 		
 Project

 		
 Build Version

 		
 Model

 		
 Dataset

 		
 Training

 		
 Model Version

 		
 Deployment

 		
 Notebook (IDE)

 		
 Islands (Plugins)

 		
 Treasure Chest

 		
 Python API Reference

 		
 Under Construction

 		
 Python Toolkit Reference

 		
 Shortcuts

 		
 Publish

 		
 Serving

 		
 Developer Guide

 		
 Contributing to Noronha

 		
 Before you begin

 		
 Modules Relationship

 		
 Creating a project

 		
 Publishing a model version

 		
 Launching the IDE

 		
 Modules Reference

 		
 db

 		
 bay

 		
 Production Guide

 		
 Deploying Noronha

 		
 Requirements

 		
 Configuring Kubernetes

 		
 Configuring Noronha client on the machine

 		
 Deploy Artifactory, MongoDB and NodeJS

 		
 Ingress setup

_images/components_overview.png
o)
Metadata Model files Da!us.ei Notebook Avtomation > £ 9
management versioning outputs =
-]
SE
A project'simage Container Notebook execution
+ Dependencies + Model file
+ Nofebooks » Metadata » IDE Training Prediction
+ Framework's tools + Dataset =3
and libs + Configuration sipyter Papermil Flask ﬁ

Command line interface

Python API

_images/data_model.png
works with N

Project

generates N

Deployment. Training

uses one

uses one

uses one

